
The NASL2 reference manual

Michel Arboi <mikhail@nessus.org>

$Date: 2005/04/29 08:50:59 $

Abstract

This is the NASL2 reference manual ($Revision: 1.65 $). It describes the
language syntax and the internal functions.

If you want tips on how to write a security test in NASL, readThe Nessus
Attack Scripting Language Reference Guideby Renaud Deraison<deraison@
nessus.org> .

Contents

1 Introduction 2
1.1 History . 2
1.2 Differences between NASL1 and NASL2 2
1.3 Copyright . 2
1.4 Comments . 2

2 The NASL2 grammar 3
2.1 Preliminary remarks . 3
2.2 Syntax . 3
2.3 Types . 6
2.4 Operators . 8

2.4.1 General operators . 8
2.4.2 Arithmetics operators . 8
2.4.3 Nice C operators . 9
2.4.4 String operators . 9
2.4.5 Compare operators . 10
2.4.6 Logical operators . 10
2.4.7 Bit fields operators . 10
2.4.8 Special behavior . 10

2.5 Precedence . 11
2.6 Loops and control flow . 11

2.6.1 Operators . 11
2.6.2 Special behavior . 12

2.7 Declarations . 12
2.7.1 Variable declarations . 12
2.7.2 Function declarations . 13
2.7.3 Retrieving function arguments 13
2.7.4 Calling functions . 13

1

3 The NASL2 library 15
3.1 Predefined constants . 15
3.2 Built-in functions . 16

3.2.1 Knowledge base functions 16
3.2.2 Report functions . 17
3.2.3 Description functions . 18
3.2.4 Other “glue” functions . 21
3.2.5 Network functions . 22
3.2.6 String manipulation functions 25
3.2.7 HTTP functions . 29
3.2.8 Raw IP functions . 30
3.2.9 Cryptographic functions . 33
3.2.10 Miscellaneous functions . 34
3.2.11 “unsafe” functions . 36

3.3 NASL library . 37
3.3.1 dump.inc . 38
3.3.2 ftp_func.inc . 38
3.3.3 http_func.inc . 38
3.3.4 http_keepalive.inc . 40
3.3.5 misc_func.inc . 40
3.3.6 nfs_func.inc . 41
3.3.7 smb_nt.inc . 42
3.3.8 smtp_func.inc . 45
3.3.9 telnet.inc . 46
3.3.10 uddi.inc . 46

4 Hacking your way inside the interpretor 47
4.1 How it works . 47

4.1.1 The parser . 47
4.1.2 The interpretor . 47
4.1.3 Memory management . 48
4.1.4 Internal functions interfaces 48

4.2 Adding new internal functions . 48
4.2.1 Interface . 48
4.2.2 Reading arguments . 49
4.2.3 Returning a value . 49
4.2.4 Adding your function in nasl_init.c 50
4.2.5 Cave at . 50

4.3 Adding new features to the grammar 50
4.3.1 caveat . 50
4.3.2 Adding a new operator in the grammar 50
4.3.3 Adding a new type to the grammar 50

4.4 Checking the result . 50

2

1 Introduction

1.1 History

Please readThe Nessus Attack Scripting Language Reference Guide.
Here is what the man page says:

NASL comes from a private project called “pkt_forge”, which was
written in late 1998 by Renaud Deraison and which was an interactive
shell to forge and send raw IP packets (this pre-dates Perl’s Net::RawIP
by a couple of weeks). It was then extended to do a wide range of net
work-related operations and integrated into Nessus as “NASL”.

The parser was completely hand-written and a pain to work with. In
Mid-2002, Michel Arboi wrote a bison parser for NASL, and he and Re-
naud Deraison re-wrote NASL from scratch. Although the “new” NASL
was nearly working as early as August 2002, Michel’s lazyness made us
wait for early 2003 to have it working completely.

1.2 Differences between NASL1 and NASL2

• NASL2 uses a real Bison parser. It is stricter and can handle complex expres-
sions.

• NASL2 has more built-in functions (although most of them could be back ported
to NASL1).

• NASL2 has more built-in operators.

• NASL2 is much quicker (about sixteen times).

• Most NASL2 scripts cannot run under NASL1.

• And a few NASL1 scripts cannot run under NASL2 (but fixing them is easy).

• NASL2 user-defined functions can handle arrays.

1.3 Copyright

This document was written by Michel Arboi and is (C) Tenable Security. Permission
is granted to reproduce this document as long as you do not modify it (and leave this
notice in place, of course).

1.4 Comments

Please send comments to Michel Arboi<mikhail@nessus.org> .
I checked the spelling of this document with an American dictionary, however the
grammar may be incorrect.

3

2 The NASL2 grammar

2.1 Preliminary remarks

• A comment starts with a# and finishes at the end of the current line. It is ignored
by the lexical analyzer.

• You may insert “blanks” anywhere between two lexical tokens.
A blank may be a sequence of white space, horizontal or vertical tabulation, line
feed, form feed or carriage return characters; or a comment.

• Token are parsed by a lexical analyzer and returned to the parser.

– As the lexical analyzer returns the longer token it finds, expressions like
a+++++b without any white space are erroneous because they will be in-
terpreted asa++ ++ + b i.e. (a++ ++) + b just like in ANSI C1.
You have to insert spaces:a++ + ++b

– You cannot insert spaces in the middle of multiple character tokens. e.g.
x = a + +; will not parse. Writex = a ++;

2.2 Syntax

decl_list instr_decl
instr_decl instr_decl_list

instr_decl instr
func_decl;

func_decl function identifier(arg_decl) block

arg_decl /*nothing*/
arg_decl_1

arg_decl_1 identifier
identifier, arg_decl_1

block { instr_list}
{ }

instr_list instr
instr instr_list

instr s_instr ;
block
if_block
loop

s_instr aff
post_pre_incr
rep
func_call
ret

1They used to work in K&R C.

4

inc
loc
glob
break
continue
/*nothing*/

ret return expr
return

if_block if (expr) instr
if (expr) instrelseinstr

loop for_loop
while_loop
repeat_loop
foreach_loop

for_loop for (aff_func; expr; aff_func) instr

while_loop while (expr) instr

repeat_looprepeat instruntil expr;

foreach_loopforeach identifier(array) instr

array expr

aff_func aff
post_pre_incr
func_call
/*nothing */

rep func_callx expr

string STRING1
STRING2

inc include (string)

func_call identifier(arg_list)

arg_list arg_list_1
/*nothing*/

arg_list_1 arg
arg, arg_list_1

arg expr
identifier: expr

aff lvalue= expr
lvalue+= expr
lvalue-= expr
lvalue*= expr
lvalue/= expr

5

lvalue%= expr
lvalue> >= expr
lvalue> > >= expr
lvalue< <= expr

lvalue identifier
array_elem

identifier IDENTIFIER

x

array_elem identifier[array_index]

array_index expr

post_pre_incr++ lvalue
– lvalue
lvalue++
lvalue–

expr (expr)
logic_expr
arith_expr
bit_expr
post_pre_incr
compar
INTEGER

STRING2
STRING1
var
aff
cst_array
ipaddr

logic_expr exprand expr
! expr
expror expr

arith_expr expr+ expr
expr- expr
- expr
expr* expr
expr/ expr
expr% expr
expr** expr

bit_expr ~ expr
expr& expr
expr^ expr
expr | expr
expr> > expr
expr> > > expr
expr< <expr

6

compar expr>< expr
expr>!< expr
expr=~ string
expr!~ string
expr< expr
expr> expr
expr== expr
expr!= expr
expr>= expr
expr<= expr

var identifier
num_arg
array_elem
func_call

ipaddr INTEGER . INTEGER . INTEGER . INTEGER

num_arg $INTEGER

$*

cst_array [l_array]

l_array array_data
array_data, l_array

array_data atom
string=> atom

atom integer
string

loc local_var arg_decl

glob global_var arg_decl

INTEGER is any sequence of decimal digit (preceded by an optional minus sign), or
0 followed by a sequence of octal digits, or0x followed by a sequence of
hexadecimal digits.

IDENTIFIER is any sequence of letters (uppercase or lowercase) or digits, starting with
a letter. The underscore sign is treated as a letter. Note that “x” is not
exactly an identifier because it is the “repeat” operator, but can be used for
function or variables names.

STRING1 is a string between simple quotes.

STRING2 is a string between double quotes.

2.3 Types

NASL2 handles the following data types:

7

1. integers
Any sequence of digits with an optional minus sign is an integer. NASL2 uses
the C syntax: octal numbers can be enter by starting with0 and hexadecimal
with 0x (i.e. 0x10 = 020 = 16)

2. strings, which can exist in two flavors: “pure” and “impure”2.

(a) “Impure” strings are entered between double quotes and are notconverted:
backslashes remain backslashes. “Impure” strings are transformed into
“pure” string by the internalstring function.

(b) “Pure” strings are returned bystring or are entered between simple quotes.
In this case, a few escape sequences are transformed3.

3. arrays, which can be indexed with integers4 or strings5.

4. And theNULL value, which is what you get if you read an initialized variable,
or what internal functions returns in case of severe error.
Read the warning below!

5. Booleansare not a standalone type. The comparison operators return0 for
FALSE and1 for TRUE. Any other value is converted :

• The undefined or null value is FALSE.

• Integers are TRUE if not null;0 is FALSE.

• Strings are TRUE if not empty and not"0" . This is the same behaviour as
Perl or NASL1.
WARNING! Previous versions of this manual were wrong and said that
"0" was TRUE. We might switch to this more consistent semantics. To
be sure of the results, it is better to test “strlen(s) > 0” if non empty string
should be TRUE, or “int(s)” if the string should be interpreted as an integer.

• Although it does not really make sense, arrays are always TRUE, whether
they are empty or not.

All built-in or user-defined functions can handle or return all those types (even arrays!).

Warnings about the NULL value

2This is an heritage from NASL1, it would have been too complex to break it. Thestring function
interprets escape sequences in “impure” strings and returns a “pure” string; it just copy “pure” strings without
changing them. Note thatdisplay callsstring before printing its argument on the standard output.

3Much less than in C, but I don’t think we need the octal representation, wide chars, etc. Note that the
parser did not accept\0 in older NASL2 versions; and\x00 truncated the string before the nul character. This
has been fixed.

So...\n is the newline character,\t the horizontal tabulation,\v the vertical tabulation,\r line feed,\f form
feed,\’ the single quote,\ ” the double quote (just in case), and\x42 is “B”, because its ASCII code is 0x42
(66 in hex).

4Elements are numbered from 0, just like in C. Negative indexes are not supported (yet) and big values
are not recommended as they woul eat memory. If you want such indexes, you should convert them into
strings, so that they get hashed. I admit that this is neither clean nor efficient.

5Like the Perl hashes. Hashes have a big inconvenient: they destroy the order of the data they store.

8

NULL and the array operator Reading an array element from a NULL value
will immediately convert it into an array. An empty array of course, but no more an
undefined variable. Changing this means big modifications in the NASL interpreter.
For example:

v = NULL;
isnull(v)=TRUE and typeof(v)="undef"
x = v[2];
isnull(x)=TRUE and typeof(x)="undef"
But isnull(v)=FALSE and typeof(v)="array"

NULL and isnull If you want to check if a variable is undefined, you have to
usedisnull(var) . Testing the equality with theNULL constant (var == NULL) is
not a good idea, asNULL will be converted to0 or the empty string“” according to
the type of the variable. This is necessary to ensure that variables are “automatically
initialized” - changing this would probably break some existing scripts.

2.4 Operators

2.4.1 General operators

• = is the assignment operator.

– x=42; puts 42 into the variablex. The previous value is forgotten.

– x=y; copies the value of variabley into x. If y was undefined,x becomes
undefined too.

• [] is the array index operator.

– A variable cannot be atomic6 and an array at the same time. If you changed
the type, the previous value(s) is (are) lost.

– However, this operator can be used to extract a character from a string: if
s = "abcde", thens[2] = "c" .
In NASL1, this could be used tochangethe character too: you could write
s[2] = "C"; ands became"abCde" . This is no longer true; you have
to use theinsstr function and write something likes = insstr(s, "C", 2, 2);
Seeinsstr on page 26.

– y[1] = 42; makes an array out ofy and puts 42 in the second element.
If y was not an array, it’s first undefined.

2.4.2 Arithmetics operators

Be aware that there is no strict rule on the integer size in NASL2. The interpretor
implements them with the native “int” C type, which is 32 bit long on most systems,
and maybe 64 bit long on a few one7. There is no overflow or underflow protection.

6i.e. a “string” or an “integer”, or even “null”.
7Yes, no more 16 bit systems! Who wants to port NASL2 to MS/DOS?

9

• + is the addition operator.

• - is the subtraction operator.

• * is the multiplication operator.

• / is the integer division operator. Please note that:

– NASL2 does not support floating point operations.

– Division by zero will return 0 instead of crashing the interpretor. How nice
of us!

• %is the modulo. Once again, if the 2nd operand is null, the interpretor will return
0 instead of crashing on SIGFPE.

• ** is the exponentiation or power function8.

2.4.3 Nice C operators

NASL2 imported some nice operators from C:

• ++ is the pre-incrementation (++x) or post-incrementation (x++).
++x adds 1 tox and returns the result;x++ adds 1 to x but returns the previous
value.

• - is the pre-decrementation (–x) or post-decrementation (x–).

• += -= *= /= %= have the same meaning as in C
e.g.x += y; is equivalent to x = x + y;butx is evaluated only once. This is im-
portant in expressions likea[i++] *= 2; where the index “i” is incremented
only once.

• <<= and>>= also exist; we added>>>=

2.4.4 String operators

• + is the string concatenation. However, you should better use thestring function.

• - is the “string subtraction”. It removes the first instance of a string inside an-
other.
For example’abcd’ - ’bc’ will give ’ad’ .

• [] extracts one character from the string, as explained before.

• >< is the “string match” operator. It looks for substrings inside a string.
’ab’ >< ’xabcdz’ is TRUE; ’ab’ >< ’xxx’ is FALSE.

• >!< is the “string don’t match” operator. It looks for substrings inside a string
and returns the opposite as the previous operator.
’ab’ >!< ’xabcdz’ is FALSE; ’ab’ >!< ’xxx’ is TRUE.

8** is Fortran syntax. Maybe some of you will regret the Basic syntax, but^ is already used by the
exclusive-or (xor) operator (C syntax).

10

• =˜ is the “regex match” operator. It is similar to a call to the internal function
eregbut is quicker because the regular expression is compiled only once when
the script is parsed
s =˜ "[ab]*x+" is equivalent toereg(string:s, pattern:"[ab]*x+", icase:1)

• !˜ is the “regex don’t match” operator. It gives the opposite result of the previous
one9.

2.4.5 Compare operators

• == is TRUE if both arguments are equals, FALSE otherwise.

• != is TRUE if both arguments are different, TRUE otherwise.

• > is the “greater than” operator.

• >= is the “greater than or equal” operator.

• < is the “lesser than” operator.

• <= is the “lesser than or equal” operator.

2.4.6 Logical operators

• ! is the logical “not”. TRUE if its argument is FALSE, FALSE otherwise.

• && is the logical “and”. Note that if the first argument is FALSE, the second is
not evaluated.

• || is the logical “or”. If the first argument is TRUE, the second is not evaluated.

2.4.7 Bit fields operators

• ˜ is the arithmetic “not”, the 1-complement

• & is the arithmetic “and”.

• | is the arithmetic “or”.

• ˆ is the arithmetic “xor” (exclusive or).

• << is the logical bit shift to the left.

• >> is the arithmetic / signed shift to the right10.

• >>> is the logical / unsigned shift to the right11.

In all shift operators, the count is on the right. i.e.x>>2 is equivalent tox/4 and
x<<2 is x*4

9In fact, there is a pathological case where both operator returnsNULL : when the pattern could not be
compiled. You will get an error when the pattern is parsed, then every time you try to execute the line.

10The sign bit, if any, is propagated.
11The sign bit is pushed to the right and replaced with zero.

11

2.4.8 Special behavior

• break can (but should not) be used to exit from a function or the script.

• In case its arguments have different types, + now tries very hard to do something
smart, i.e. a string concatenation, then an integer addition. It prints a warning,
though, because such automatic conversion is dangerous.

– If one of its argument is undefined, + returns the other one.

– If one of its argument is a “pure string”, the other argument is converted
to a string, if necessary, and the result is a “pure string”. “Impure string”
are converted to pure stringwithout escape sequence interpretation. i.e.
"AB\n"+’de’ gives’AB\\nde’ , i.e. “AB”, a backslash, then “nde”.

– If one of its argument is an “impure string”, the second argument is con-
verted to string if necessary and the result is an “impure string”. i.e."ABC"+2
gives"ABC2".

– If one of its argument is an integer, the other is converted to integer and the
result is an integer.

– In any other case, NULL is returned.

• The “magical strings” from NASL1 have been removed. In NASL1, adding a
string to an integer might give an integer if the string contained only digits.

• The minus operator follows the same type conversion rules as plus.

• Using unitialized variables isbad. However, to ensure that old scripts still work,
theNULL undefined value will be into0 or “” according to the context (integer
or string). That’s why you have to useisnull to test if a variable is undefined.
See “warnings about the NULL value” in 2.3.

2.5 Precedence

From the higher priority to the lower:
Operators Associativity

++ -- None
** Right

~ - (unary minus) Left
! Left

* / % Left
+ - Left

<< >> >>> Left
& Left
ˆ Left
| Left

< <= > >= == != < > =~ !~ >!< >< None
&& Left
|| Left

= += -= *= /= %= <<= >>= >>>= Right

12

2.6 Loops and control flow

2.6.1 Operators

• for (expr1; cond; expr2) block; is similar to the C operator and is
equivalent to
expr1; while(cond) block; expr2;
A classical construction to count from 1 to 10 is:
for(i=1;i<=10;i++) display(i,’{\n’);

• foreach var (array) block; iterates all elements in an array. Note that
var iterates through thevaluesstored in the array, not theindexes. If you want
that, just use:foreach var (keys(array)) block;

• while(cond) block; executes the block as long as the condition is TRUE.
If the condition is FALSE, the block is never executed.

• repeat block; until (cond); executes the blocks as long as the condi-
tion is TRUE. The block is executed at least once.

• break breaks the current loop and jumps at its exit.
If you are not inside a loop, the behavior is undefined12.

• continue 13 jumps to the next step of the loop.
If you are not inside a loop, the behavior is undefined.

• return returns a value from the current function.

2.6.2 Special behavior

2.7 Declarations

2.7.1 Variable declarations

NASL1 had only global variables. NASL2 uses global and local variables. Local vari-
ables are created in a function and stop existing as soon as the function returns. When
the interpretor looks for a variable, it first searches in the current function context, then
in the calling context (if any), etc., until it reaches the top level context that contains
the global variables.

Normally, you do not need to declare a variable: either it exists, because you already
used it in this context, or because a calling function used it, or it will be created in the
current context. However, this may be dangerous in some cases:

1. if you want to write into aglobal variable from within a function and cannot be
sure that the variable was created first in the top level context, or created as a
local variable in a calling function context.

2. if you want to be sure that you are creating a brand newlocal variable and not
overwriting a global variable with the same name.

So you can explicitly declare a variable:

12Currently, it exits from the current function or the script. But you should not rely upon this behavior.
13WARNING! This operator was introduced in Nessus 2.1.x; Nessus 2.0.x. cannot parse the script.

13

• local_var var;

• global_var var;

If the variable already exists in the specified context, you will get an error message, but
this will work!

2.7.2 Function declarations

• function name (argname1, argname2) block;

Note that the argument list may be empty, but if it is not, user-defined function param-
eters must be named14. Unnamed arguments may be used without being declared.

2.7.3 Retrieving function arguments

Inside a NASL function, named arguments are just accessed as any local variable. Un-
named arguments are implemented through the special array_FCT_ANON_ARGS15.
This variable will beNULL in interpretors belowNASL_LEVEL 2190. You may put
this at the start of scripts that need this function:

if (NASL_LEVEL < 2190) exit(0); # _FCT_ANON_ARGS is not implemented

1. Writing to _FCT_ANON_ARGS is undefined. Currently, the memory is wasted
but the value cannot be read back.

2. Using _FCT_ANON_ARGS to try to read named arguments is bad too. Cur-
rently, there is a protection and aNULL value is returned.

2.7.4 Calling functions

Here is an example with named arguments:

function fact(x)
{

local_var i, f;
f = 1;
for (i = 1; i <= n; i ++) f *= i;
return f;

}
display("3 ! = ", fact(x: 3), "\n");

And the same with unnamed arguments:

14Unnamed arguments were introduced in NASL2.1.
15Shell-like special variables$1, $2... or the$* array were introduced inNASL_LEVEL 2160, but they

broke the compatibility with older interpretors: the scripts could not be parsed. So those “dollar arguments”
were removed inNASL_LEVEL 2190, because_FCT_ANON_ARGS was a more flexible solution. Ac-
tually, the special array__FCT_ANON_ARGS(with two leading unscores!) was introduced in 2180 level,
but it was subtly flawed. It was renamed when the bug was fixed so that nobody uses it.

14

function fact()
{

local_var i, f;
f = 1;
for (i = 1; i <= _FCT_ANON_ARGS[0]; i ++) f *= i;
return f;

}
display("3 ! = ", fact(3), "\n");

And another, mixing the two flavours:

function fact(prompt)
{

local_var i, f;
f = 1;
for (i = 1; i <= _FCT_ANON_ARGS[0]; i ++)
{

f *= i;
display(prompt, i, ’! = ’, f, ’\n’);

}
return f;

}
n = fact(3, prompt: ’> ’);

15

3 The NASL2 library

3.1 Predefined constants

These constants are actually variables, i.e. you can modify their value in a script. If
you really want to shoot you in the foot, that is...

• Booleans constants

– FALSE = 0

– TRUE = 1

• Plugin categories

– ACT_INIT : the plugin just sets a few KB items (kinds of global variables
for all plugins).

– ACT_SCANNER: the plugin is a port scanner or something like it (e.g.
ping).

– ACT_SETTINGS: just like ACT_INIT, but run after the scanners, once
we are sure that the host is alive (for performance).

– ACT_GATHER_INFO : the plugin identifies services, gather data, parses
banners, etc.

– ACT_ATTACK : the plugin launches a soft attack, e.g. a web directory
traversal.

– ACT_MIXED_ATTACK : the plugin launches an attach that might have
dangerous side effects (crashing the service most of the time).

– ACT_DESTRUCTIVE_ATTACK : the plugin tries to destroy data16 or
launch some dangerous attack (e.g. testing a buffer overflow is likely to
crash a vulnerable service).

– ACT_DENIAL : the plugin tries to crash a service.

– ACT_KILL_HOST : the plugin tries to crash the target host or disable it
(e.g. saturate the CPU, kill some vital service...).

– ACT_FLOOD : the plugin tries to crash the target host or disable it by
flooding it with incorrect packets or requests. It may saturate the network
or kill some routing, switching or filtering device on the way.

• Network constants

– Nessus “encapsulation”

∗ ENCAPS_IP= 1; this is the “transport” value for a pure TCP socket.

∗ ENCAPS_SSLv23= 2; this is the “transport” value for a SSL con-
nection in compatibility mode. Note that thefind_serviceplugin will
never declare a port with this “encapsulation”, but you may use it in a
script.

∗ ENCAPS_SSLv2= 3. The old SSL version which only supports
server side certificates.

16By the way, there is onlyoneplugin that really tries to destroy data. This ishttp_methods.nasl

16

∗ ENCAPS_SSLv3= 4. The new SSL version: it supports server and
client side certificates, more ciphers, and fixes a few security holes.

∗ ENCAPS_TLSv1= 5; TLSv1 is defined RFC 2246. Some people call
it “SSL v3.1”.

– Sockets options

∗ MSG_OOB, a socket option used to send “out of band data”.

– Raw sockets

∗ IPPROTO_ICMP as defined in the system C include files.
∗ IPPROTO_IGMP
∗ IPPROTO_IP
∗ IPPROTO_TCP
∗ IPPROTO_UDP
∗ pcap_timeout= 5
∗ TH_ACK = 0x10. This TCP flag indicates that the packet contains a

valid acknowledgment.
∗ TH_FIN = 0x01. This TCP flag indicates that the packet negociates

the end of the session.
∗ TH_PUSH = 0x08.
∗ TH_RST = 0x04. This TCP flag indicates that the connection was

refused or “reset by peer”.
∗ TH_SYN = 0x02. This belong to the initial handshake (connection

opening).
∗ TH_URG = 0x20. This TCP flag indicates that the packet contains

urgent data.

• Miscellaneous constants

– NULL is the undefined value.

• Nessusd glue

– description is set to1 whennessusdparses the script the first time (to get
its name, description, summary, etc.), then to0 when it is run.

– COMMAND_LINE is set to0 when the script is run bynessusdor to 1
when it is run by thenaslstandalone interpretor.

3.2 Built-in functions

Internal built-in functions can have unnamed and named arguments. Some use both
types.

3.2.1 Knowledge base functions

This KB is used for inter-plugin communication.

• set_kb_itemcreates a new entry in the KB.
It takes two named string arguments:nameandvalue.
Entering an item several times creates a list.

17

• get_kb_itemretrieves an entry from the KB.
It takes one unnamed string argument (thenameof the KB item).
If the item is a list, the plugin will fork and each child process will use a different
value. Nessus remebers which child got which value: reading the same item a
second time will not fork again!
You should not call this function when some connections are open if you do not
want to see several processes fighting to read or write on the same socket.

• get_kb_list retrieves multiple entrie from the KB. It takes one unnamed string
argument which may either designate a literal KB entry name, or a mask. The
returned value is a “hash”, i.e. an array with potentially duplicated indexes;
because of this, you need to convert it withmake_list() or useforeach to access
each element (themake_array function allows you to create such hashes).

Retrieves the list of all the web servers
webservers = get_kb_list("Services/www");
Retrieves the list of all the services
services = get_kb_list("Services/*");
Retrieves the whole KB
services = get_kb_list("*");

• replace_kb_itemadds a new entry in the KB or replace the old value.
It takes two named string arguments:nameandvalue.
Entering an item several times does not create a list, it just overwrites the old
value.
As this function is not defined in all Nessus version, it is safer to check that it is
defined before calling it or use thereplace_or_set_kb_itemNASL function.

3.2.2 Report functions

Those functions send back information to the Nessus daemon.

• scanner_statusreports the port scan progress (if the plugin is a port scanner!).
It takes two named integer arguments:

– current, the number of ports already scanned,

– total, the full number of ports to be scanned.

• security_notereports a miscellaneous information.
It either takes an unnamed integer argument (the port number), or a some of
those named arguments:

– data is the text report (the “description” by default).

– port is the TCP or UDP port number of the service (or nothing if the bug
concerns the whole machine, e.g. the IP stack configuration).

– proto (or protocol) is the protocol ("tcp" by default;"udp" is the other
value).

• security_holereports a severe flaw.
It either takes an unnamed integer argument (the port number), or a some of
those named arguments:

18

– data is the text report (the “description” by default).

– port is the TCP or UDP port number of the vulnerable service (or nothing
if the bug concerns the whole machine, e.g. the IP stack configuration).

– proto (or protocol) is the protocol ("tcp" by default;"udp" is the other
value).

• security_warning reports a mild flaw.
It either takes an unnamed integer argument (the port number), or a some of
those named arguments:

– data is the text report (the “description” by default).

– port is the TCP or UDP port number of the vulnerable service (or nothing
if the bug concerns the whole machine, e.g. the IP stack configuration).

– proto (or protocol) is the protocol ("tcp" by default;"udp" is the other
value).

3.2.3 Description functions

All those functions butscript_get_preferenceare only used in the “description part”
of the plugin, i.e. the block that is run when thedescription variable is1. They only
make sense in the Nessus environment and have no effect when the plugin is run with
the standalonenasl interpretor.

• script_add_preferenceadds an option to the plugin.
It takes tree named arguments:

– name is the option name. As it is displayed “as is” in the GUI, it usually
ends with “:”.

– type is the option type. It may be:

∗ checkbox
∗ entry
∗ password
∗ radio

– value is the default value (“yes” or “no” for checkboxes, a text string for
“entries” or “passwords”) except for “radios”, where it is the list of options
(separate the items with “;”). e.g.
script_add_preference(name:"Reverse traversal", type:"radio", value:"none;Basic;Long
URL");

• script_bugtraq_id sets the SecurityFocus “bid”.
It takes one or several unnamed integer arguments.

• script_categorysets the “category” of the plugin.
Usually, its unnamed integer argument is one of those pre-defined constants17

explained on page 15:

17Using an integer is definitely not a good idea, as new values may be inserted beforethe one you used.
Actually, those values are not constants but initialized variables; changing their values in your script is a
good way to shoot you in the foot.

19

– ACT_INIT

– ACT_SCANNER

– ACT_SETTINGS

– ACT_GATHER_INFO

– ACT_ATTACK

– ACT_MIXED_ATTACK

– ACT_DESTRUCTIVE_ATTACK

– ACT_DENIAL

– ACT_KILL_HOST

• script_copyright sets the copyright string of the plugin (usually the author’s
name).
It takes an unnamed string argument, or one or several named18 arguments:en-
glish, francais, deutsch, portuguese.

• script_cve_idsets the CVE IDs of the flaws tested by the script.
It takes any number of unnamed string arguments. They usually looks like
“CVE-2002-042” or “CAN-2003-666”.

• script_dependencieis the same function asscript_dependencies(too many ty-
pos?).

• script_dependenciessets the lists of scripts that should be run before this one
(if “optimize mode” is on).
It takes any number of unnamed string arguments.

• script_description sets the “description” of the plugin.
It takes an unnamed string argument, or one or several named arguments:en-
glish, francais, deutsch, portuguese. If the argument is unnamed, the default
language isenglish.

• script_exclude_keyssets the list of “KB items” that mustnot be set to run this
script in “optimize mode”.
It takes any number of unnamed string arguments.

• script_family sets the “family” of the plugin.
It takes an unnamed string argument, or one or several named arguments:en-
glish, francais, deutsch, portuguese. If the argument is unnamed, the default
language isenglish.
There is no standardized family, but you should avoid inventing too many new
ones. Here is a list:

18If you want to use a full sentence like “this plugin was written by Foo Bar” which would be translated
in French, “ce plugin a été écrit par Foo Bar”.

20

english francais

Backdoors Backdoors
Brute force attacks

CGI abuses Abus de CGI
CGI abuses: XSS

CISCO CISCO
Denial of Service Déni de service

Finger abuses Abus de finger
Firewalls Firewalls

FTP FTP
Gain a shell remotely Obtenir un shell à distance
Gain root remotely Passer root à distance

General General
Misc. Divers

Netware
NIS

Ports scanners Port scanners
Remote file access Accès aux fichiers distants

RPC RPC
Settings Configuration

Service detection
SMTP problems Problèmes SMTP

SNMP SNMP
Useless services Services inutiles

Windows Windows
Windows : User management

AIX Local Security Checks
Debian Local Security Checks

Fedora Local Security ChecksCGI
FreeBSD Local Security Checks
Gentoo Local Security Checks

MacOS X Local Security Checks
Mandrake Local Security Checks
Red Hat Local Security Checks
Solaris Local Security Checks
SuSE Local Security Checks

• script_get_preferencereads an option. It takes an unnamed string argument.
Note that it might returns an empty string if you are running the script from the
standalone NASL interpretor.

• script_get_preference_file_contentreads an “file” option. It takes an unnamed
string argument. It retuns the content of the file, which is transmited from the
Nessus client to the server.
Note:script_get_preference_file_contentandscript_get_preference_file_location
are restricted to “trusted” plugins.

• script_get_preference_file_locationreads an option. It takes an unnamed string
argument. It only makes sense if the preference type is “file”; it retuns the path

21

of the local copy of the file.script_get_preferencewould return the path of the
file on the client machine, which is not useful.

• script_id sets the script number19. It takes an unnamed integer argument.

• script_namesets the “name” of the plugin.
It takes an unnamed string argument, or one or several named arguments:en-
glish, francais, deutsch, portuguese. If the argument is unnamed, the default
language isenglish.

• script_require_keyssets the list of “KB items” that must be set to run this script
in “optimize mode”.
It takes any number of unnamed string arguments.

• script_require_ports sets the list of TCP ports that must be open to run this
script in “optimize mode”.
It takes any number of unnamed integer or string arguments. e.g.23 or "Ser-
vices/telnet".

• script_require_udp_ports sets the list of UDP ports that must be open to run
this script in “optimize mode”.
It takes any number of unnamed integer arguments20.

• script_summary sets the “short description” of the plugin.
It takes an unnamed string argument, or one or several named arguments:en-
glish, francais, deutsch, portuguese. If the argument is unnamed, the default
language isenglish.
Each of its arguments should be a single line of text.

• script_timeout sets the default timeout of the plugin.
It takes an unnamed integer argument. If it is0 or (-1), the timeout is infinite.

• script_versionsets the “version” of the plugin.
It takes an unnamed string argument21.

3.2.4 Other “glue” functions

• get_preferencetakes an unnamed string argument and returns the “preference”
value. This function is necessary to retrieve some server options. For example:

p = get_preference(’port_range’); # returns something like 1-65535

19Which should you use? Well, there is only one rule: two scripts must have two different IDs. Ff your
script is integrated into the Nessus distribution, the maintainer will choose an unaffected number.

20find_service.nesidentifies TCP services and has no equivalent for UDP. So do not expect something
like “Services/DNS” to returns a value different from 53. Unless you installedamap from www.thc.org
http://www.thc.org/ and run the UDP service identification.

21Usually, it is set to “$Revision” which is updated by CVS

22

3.2.5 Network functions

Note: the “socket” data type used by those functions is in fact an integer. However, you
should not touch it and it may be turned into an opaque data type some day. In case of
error, all those functions returns a value that can be interpreted as FALSE (most of the
time NULL).

• closecloses the socket given in its only unnamed argument.

• end_denialtakes no argument and returns TRUE if the target host is still alive
and FALSE if it is dead. You must have calledstart_denial before your test.

• ftp_get_pasv_portsends the “PASV” command on the open socket, parses the
returned data and returns the chosen “passive” port.
It takes one named argument:socket.

• get_host_nametakes no argument and returns the target host name.

• get_host_iptakes no arguments and returns the target IP address.

• get_host_open_porttakes no argument and returns an open TCP port on the
target host.
This function is used by tests that need to speak to the TCP/IP stack but not to a
specific service.

• get_port_transport takes an unnamed integer (socket) argument and returns its
“encapsulation” (see page 23).

• get_port_statetakes an unnamed integer (TCP port number) and returns TRUE
if it is open and FALSE otherwise.
As some TCP ports may be in an unknown state because they were not scanned,
the behavior of this function may be modified by the “consider unscanned ports
as closed” global option. When this option is reset (the default),get_port_state
will return TRUE on unknown ports; when it is set,get_port_statewill return
FALSE.

• get_source_porttakes an unnamed integer (opn TCP socket) and returns the
source port (i.e. on the Nessus server side).

• get_tcp_port_stateis a synonym forget_port_state.

• get_udp_port_statereturns TRUE if the UDP port is open, FALSE otherwise
(seeget_port_statefor comments). Note that UDP port scanning may be unre-
liable.

• islocalhosttakes no argument and returns TRUE if the target host is the same as
the attacking host, FALSE otherwise.

• islocalnet takes no argument and returns TRUE if the target host is on the same
network as the attacking host, FALSE otherwise.

• join_multicast_group takes an string argument (an IP multicast address) and
returns TRUE if it could join the multicast group. If the group was already
joined, the function joins increments an internal counter.

23

• leave_multicast_grouptakes an string argument (an IP multicast address).
Note that ifjoin_multicast_group was called several times, each call toleave_multicast_cast
only decrements a counter; the group is left when it reaches 0.

• open_priv_sock_tcpopens a “privileged” TCP socket to the target host.
It takes two named integer arguments:

– dport is the destination port,

– sport is the source port, which may be inferior to 1024.

• open_priv_sock_udpopens a “privileged” UDP socket to the target host.
It takes two named integer arguments:

– dport is the destination port,

– sport is the source port, which may be inferior to 1024.

• open_sock_tcpopens a TCP socket to the target host22.
It takes an unnamed integer argument (the port number) and two optional named
integer arguments:

– bufsz, if you want to bufferize IO (this is disabled by default).
This parameter has been added after Nessus 2.0.10.

– timeout, if you want to change it from the default,

– transport, to force Nessus a specific “transport”. Its main use is to disable
Nessus “auto SSL discovery” feature on dynamic ports (e.g. FTP data con-
nections).
The possible values fortransport were explained in § 3.1 on page 15. They
are:

∗ ENCAPS_IP
∗ ENCAPS_SSLv23
∗ ENCAPS_SSLv2
∗ ENCAPS_SSLv3
∗ ENCAPS_TLSv1

• open_sock_udpopens a UDP socket to the target host.
It takes an unnamed integer argument, the port number.

• recv receives data from a TCP or UDP socket.
For a UDP socket, if it cannot read data, NASL will suppose that the last sent
datagram was lost and will sent it again a couple of time.
It takes at least two named arguments:

– socketwhich was returned byopen_sock_tcp, for example,

– andlength, the number of bytes that you want to read at most.
recv may return beforelength bytes have been read: as soon as at least one
byte has been received, the timeout is lowered to 1 second. If no data is

22In NASL, there is no way you can open connections to some specific host. This way, a NASL script
cannot be trojaned.

24

received during that time, the function returns the already read data; oth-
erwise, if the full initial timeout has not been reached, a 1 second timeout
is re-armed and the script tries to receive more data from the socket. This
special feature was implemented to get a good compromise between relia-
bility and speed when Nessus talks to unknown or complex protocols. Two
other optional named integer arguments can twist this behavior:

– min is the minimum number of data that must be read in case the “magic
read function” is activated and the timeout is lowered. By default this is0.

– timeout can be changed from the default.

• recv_linereceives data fromsocketand stops as soon as aline feedcharacter has
been read,length bytes have been read or the default timeout has been triggered.

• sendsends data on a socket.
Its named arguments are:

– socket,

– data, the data block. A string is expected here (pure or impure, this does
not matter).

– length is optional and will be the fulldata length if not set,

– option is the flags for the send() system call. You should not use a raw nu-
meric value here; the only interesting constant isMSG_OOB. See § 3.1 on
page 16.

• scanner_add_portdeclares an open port to nessusd.
It takes two named arguments and returns no value:

– port is the port number,

– proto is "tcp" or "udp" .

• scanner_get_portwalks through the list of open ports. It takes one unnamed
integer argument, an index, and returns a port number or0 when the end of the
list if reached. A good way to use it is:

i = 0;
while (port = scanner_get_port(i++))
{

do_something_with_port;
}

• tcp_ping launches a “TCP ping” against the target host, i.e. tries to open a TCP
connection and sees if anything comes back (SYNACK or RST). The named
integer argumentport is not compulsory: if it is not set,tcp_ping will use an
internal list of common ports23.

• telnet_init performs a telnet negotiation on an open socket [RFC 854 / STD 8].
This function takes one unnamed argument (the open socket) and returns the data
read (more or less the telnet dialog plus the banner).

2322 (SSH), 25 (SMTP), 53 (DNS), 110 (POP3), 113 (IDENT), 443 (HTTPS), 993 (IMAPS), 8080 (alt
HTTP), 65534.

25

• this_hosttakes no argument and returns the IP address of the current (attacking)
machine.

• this_host_nametakes no argument and returns the host name of the current
(attacking) machine.

• ftp_log_in performs a FTP identification / authentication on an open socket.
It returns TRUE if it could login successfully, FALSE otherwise (e.g. wrong
password, or any network problem). It takes three named arguments:

– user is the user name (it hasnodefault value like “anonymous” or “ftp”),

– passis the password (again, no default value like the user e-mail address),

– andsocket.

• start_denial initializes some internal data structure forend_denial. It takes no
argument and returns no value.

3.2.6 String manipulation functions

• chomp takes an unnamed string argument and removes any spaces at the end of
it. “Space” means white space, vertical or horizontal tabulation, carriage return
or line feed.

• crap returns a buffer of required length. This function is mainly used in buffer
overflow tests. Its arguments are:

– length, the size of the wanted buffer,

– data, the pattern that will be repeated to fill the buffer. By default’X’ .

• display takes an unlimited number of arguments, callsstring on them, then dis-
plays them.
It returns the number of output characters.
Unprintable characters are replaced with “.”.

• egreplooks for a pattern in a string, line by line and returns the concatenation of
all lines that match. Its arguments are:

– icase,

– pattern,

– string.

• ereg matches a string against a regular expression. It returns the first found
pattern. Its arguments are:

– string,

– multiline , which is FALSE by default (string is truncated at the first “end
of line”), and can be set to TRUE for multiline search.

– pattern (standard extended POSIX regex, no PCRE for the moment!),

– and icase, which is FALSE by default, and can be set to TRUE for case
insensitive search.

26

• ereg_replacesearches and replaces all the occurrences of a pattern inside a
string. It returns the modified string, or the original string if the pattern did
not match. Its arguments are:

– string, the original string,

– pattern, the pattern that should be matched,

– replace, the replacement, which may contain escape sequences like \1 to
reference found sub-patterns. The index is the number of the opening
parenthesis, as usual24,

– icase, the case insensitive flag.

• eregmatchsearches for a pattern into a string and returns NULL if it did not
match or an array of all found sub-patterns. There is at least one returned pattern,
which is the part of the string that matched the whole pattern. For those used to
Perl, the elements of the returned array are equivalent to$0, $1, $2...25. Its
argument are

– icase,

– pattern,

– string.

Note that all the regex functions work the same way. If you want to match from the
beginning / end of your string (or your line, in the case ofegrep), you’ll have to usê
or $. If you want to eliminate what’s before or after a pattern withereg_replace, you’ll
have to play with something likê.* or .*$ and\1.
You should read your (POSIX) system manual for details on regular expressions.

• hex converts its unnamed integer argument into the hexadecimal representation.
It returns a string.

• hexstr takes one unnamed string argument and returns a string made of the hex-
adecimal representation of the ASCII codes of each input character. For example,
hexstr(’aA\n’) returns’61410a’.

• insstr takes three or four unnamed arguments: a first string, a second string, a
start index and an optional end index . Indexes starts at 0.
The function replaces the declared slice in the first string by the second string,
and returns the result. For example,
insstr(’abcdefgh’, ’xyz’, 3, 5)
returns’abcxyzgh’.

• int converts its unnamed argument into an integer. If the argument is not a string,
it returns0.

24For example,
ereg_replace(string:’ZABCABD’,pattern:’A([ABC]+)D’,replace:’\\1’)
will return ’ZBCAB’ .
25For example,
v = eregmatch(string:’XYZ IADAOZOOH’,pattern:’([AEIOU]+).*(Z.*H)’);
will set v[0]=I’ADA OZOOH’ v[1]=’IA’
andv[2]=’ZOOH’ .

27

• match matches a string against a simple shell-like pattern and returns TRUE or
FALSE. This function is less powerful thaneregbut it is quicker and its interface
is simple. Its arguments are:

– icaseif the match should be case insensitive.

– string is the input string.

– pattern is the searched pattern. The only wildcards are * (for any string,
even empty) and? (for any character).

• ord takes one unnamed string argument and returns the (integer) ASCII code of
the first character of the string.

• raw_string takes any number of unnamed arguments and returns a “pure” string
resulting from these operations:

– “Impure” strings are parsed and escaped sequences are interpreted26.

– Each integer is converted to the corresponding ASCII character27.

– Undefined variables are skipped28.

– Arrays are converted to some ASCII representation29.

– “Pure” strings are left as they were

– And last but not least, the processing stops as soon as RAW_STR_LEN =
32768 have been entered.string does not have such a limitation.

• str_replace replaces any occurence of a substring inside a bigger string and re-
turns the modified string. Its arguments are:

– string is the original string.

– find is the sub-string that is looked for.

– replaceis the replacement sub-string.

– count is optional; if set,str_replacestops after this number of occurences
have been replaced and leave the rest of the string as it is.

• string takes any number of unnamed arguments and returns a “pure” string30

resulting from these operations:

– “Impure” strings are parsed and escaped sequences are interpreted.

– Integer are converted to their ASCII representation (in decimal base). That’s
where it is different fromraw_string.

– Undefined variables are skipped31.

26In NASL1, only the first character of the string was kept.
27That’s the only way to enter a null character into a string in older version of NASL2. Remember this if

you want to be portable on old Nessus versions.
28Old versions of Nessus 1.3 were badly designed andstring stopped processing its arguments at the first

undefined value. Other functions may suffer from this bug; do not hesitate to tell.
29Which is not necessarily a good idea. Maybe we should expand them; the problem is hash elements are

not ordered.
30Note that its size is unlimited
31Old versions of Nessus 1.3 were badly designed andstring stopped processing its arguments at the first

undefined value. Other functions may suffer from this bug; do not hesitate to tell.

28

– Arrays are converted to some ASCII representation.

– “Pure” strings are left as they were.

• strcat takes any number of unnamed arguments and returns a “pure” string re-
sulting from these operations:

– Integer are converted to their ASCII representation (in decimal base).

– Undefined variables are skipped.

– Arrays are converted to some ASCII representation32.

– “Pure” and “impure” strings are left as they were.

• stridx takes two or three unnamed arguments, looks for a substring inside a string
(starting from the optional position) and returns its index (or -1 if not found or in
case of error).

– The first argument is the string (the haystack).

– The second is the substring that is looked for (the needle)

– The optional third argument is the starting position (by default0)

– Note that the return value is notNULL if the substring was not found but
-1.

• strstr takes two unnamed string arguments and searches the first occurrence of
arg2 into arg1. It returns NULL if nothing was found, or the piece of arg2 from
the first matching character till the end. For examplestrstr(’zabadz’, ’ad’) re-
turns’adz’ .

• split splits a string into an array of “lines” or “sub strings”. It takes an unnamed
parameter (the input string), an optionalsep string argument and an optional
keep integer argument; it returns the array.
If sepis not set,split cuts the input strings into lines. A line is supposed to end
with the single characterLF or the sequenceCR LF .
By default33, the separator (whatever it is) will be included in the sub-strings or
lines, unlesskeep is set top0

• strlen returns the length of the unnamed string argument. If the argument is not
a string, you get an undefined result34.

• substr takes two or three unnamed arguments: a string, a start index (counting
from 0) and an optional end index (by default, the end). It returns the desired
substring.
For example,substr(’abcde’, 2) returns’cde’ andsubstr(’abcde’, 1, 3)returns
’bcd’ .

• tolower converts its unnamed string argument to lower case.

• toupper converts its unnamed string argument to upper case.

32Which is not necessarily a good idea. Maybe we should expand them; the problem is hash elements are
not ordered.

33The keep argument appeared in Nessus 2.0.2; older versions of the NASL library do not recognize it.
34Most of the time, the “internal size” of the data, which might be 0 even if it is not true!

29

3.2.7 HTTP functions

• cgibin takes no argument and returns the cgi-bin path elements. In fact the NASL
interpretor forks and each process gets one value. This function should be con-
sidered asdeprecatedandcgi_dirs() should be used instead.

• http_deleteformats an HTTP DELETE request for the server on the port. It will
automatically handle the HTTP version and the basic or cookie based authenti-
cation. The arguments areport anditem (the URL).data is not compulsory and
probably useless in this function. It returns a string (the formatted request).

• http_get formats an HTTP GET request for the server on the port. It will auto-
matically handle the HTTP version and the basic or cookie based authentication.
The arguments areport anditem (the URL).data is not compulsory and proba-
bly useless in this function. It returns a string (the formatted request).

• http_close_socketcloses a socket. Currently, it is identical toclosebut this may
change in the future.

• http_head formats an HTTP HEAD request for the server on the port. It will
automatically handle the HTTP version and the basic or cookie based authenti-
cation. The arguments areport anditem (the URL).data is not compulsory and
probably useless in this function. It returns a string (the formatted request).

• http_open_socketopens a socket to the given port. Until Nessus 2.0.10, this
functions is identical toopen_sock_tcp; afterwards, it sets a 64K buffer for IO.

• http_recv_headersreads all HTTP headers on the given socket (unnamed in-
teger argument). It stops at the first blank line and returns a string made of all
headers, starting with the HTTP answer code.

• http_post formats an HTTP POST request for the server on the port. It will
automatically handle the HTTP version and the basic or cookie based authenti-
cation. The arguments areport , item (the URL) anddata. It returns a string (the
formatted request).

• http_put formats an HTTP PUT request for the server on the port. It will auto-
matically handle the HTTP version and the basic or cookie based authentication.
The arguments areport , item (the URL) anddata. It returns a string (the for-
matted request).

• is_cgi_installedtests if a CGI is found. If the path is relative (does not start with
a slash), the CGI is search into the cgi-bin path. This functions returns the port of
the web server where it was found (it will fork if there are several web servers);
this magical behavior allows you to write very short plugins. For example:
if (port = cgi_installed("vuln.cgi")) security_warning(port);
The arguments are:

– item, for the CGI path,

– andport ; by default, the function will look on all found web servers (i.e.
read the KB entryServices/www).

30

3.2.8 Raw IP functions

All those functions work on blocks of data which are implemented as “pure strings”.
This means that you could change them with the string manipulation functions, but this
is probably not very easy.

• dump_ip_packetdumps IP datagrams. It takes any number of unnamed (string)
arguments and does not return anything.

• dump_tcp_packetdumps the TCP parts of datagrams. It takes any number of
unnamed arguments.

• dump_udp_packetdumps the UDP parts of datagrams. It takes any number of
unnamed arguments.

• forge_icmp_packetfills an IP datagram with ICMP data. Note that theip_p
field is not updated. It returns the modified IP datagram. Its arguments are:

– data is the payload.

– icmp_cksumis the checksum, computed by default.

– icmp_codeis the ICMP code.

– icmp_id is the ICMP ID.

– icmp_seqis the ICMP sequence number.

– icmp_type is the ICMP type.

– ip is the IP datagram that is updated.

– update_ip_lenis a flag (TRUE by default). If set, NASL will recompute
the size field of the IP datagram.

• forge_igmp_packetfills an IP datagram with IGMP data. Note that theip_p
field is not updated. It returns the modified IP datagram. Its arguments are:

– code

– data

– group

– ip is the IP datagram that is updated. Note that the IGMP checksum is
automatically computed.

– type

– update_ip_lenis a flag (TRUE by default). If set, NASL will recompute
the size field of the IP datagram.

• forge_ip_packet returns an IP datagram inside the block of data. The named
argument are:

– data is the payload.

– ip_hl is the IP header length in 32 bits words.5 by default.

– ip_id is the datagram ID; by default, it is random.

– ip_len is the length of the datagram. By default, it is20 plus the length of
thedata field.

31

– ip_off is the fragment offset in 64 bits words. By default,0.

– ip_p is the IP protocol.0 by default.

– ip_src is the source address in ASCII. NASL will convert it into an integer
in network order.
Note that the function accepts anip_dst argument but ignore it!

– ip_sum is the packet header checksum. It will be computed by default.

– ip_tos is the “type of service” field.0 by default

– ip_ttl is the “Time To Live”.64by default.

– ip_v is the IP version.4 by default.

• forge_tcp_packetfills an IP datagram with TCP data. Note that theip_p field is
not updated. It returns the modified IP datagram. Its arguments are:

– data is the TCP data payload.

– ip is the IP datagram to be filled.

– th_ack is the acknowledge number. NASL will convert it into network
order if necessary.

– th_dport is the destination port. NASL will convert it into network order
if necessary.

– th_flagsare the TCP flags.

– th_off is the size of the TCP header in 32 bits words. By default,5.

– th_seqis the TCP sequence number. NASL will convert it into network
order if necessary.

– th_sport is the source port. NASL will convert it into network order if
necessary.

– th_sum is the TCP checksum. By default, the right value is computed.

– th_urp is the urgent pointer.0 by default.

– th_win is the TCP window size. NASL will convert it into network order
if necessary.0 by default.

– th_x2 is a reserved field and should probably be left unchanged.

– update_ip_lenis a flag (TRUE by default). If set, NASL will recompute
the size field of the IP datagram.

• forge_udp_packetfills an IP datagram with UDP data. Note that theip_p field
is not updated. It returns the modified IP datagram. Its arguments are:

– data is the payload.

– ip is the old datagram.

– uh_dport is the destination port. NASL will convert it into network order
if necessary.

– uh_sport is the source port. NASL will convert it into network order if
necessary.

– uh_sum is the UDP checksum. Although it is not compulsary, the right
value is computed by default.

32

– uh_ulen is the data length. By default it is set to the length thedata argu-
ment plus the size of the UDP header.

– update_ip_lenis a flag (TRUE by default). If set, NASL will recompute
the size field of the IP datagram.

• get_icmp_elementreturns an ICMP element from a IP datagram. It returns a
data block or an integer, according to the type of the element. Its arguments are:

– elementis the name of the TCP field (seeforge_tcp_packet).

– icmp is the IP datagram (not the ICMP part only).

• get_ip_elementextracts a field from a datagram. It returns an integer or a string,
depending on the type of the element. It takes two named string arguments:

– elementis the name of the field, e.g."ip_len" ou "ip_src" .
Note that"ip_dst" works here!

– ip is the datagram or fragment.

• get_tcp_elementreturns a TCP element from a IP datagram. It returns a data
block or an integer, according to the type of the element. Its arguments are:

– elementis the name of the TCP field (seeforge_tcp_packet).

– tcp is the IP datagram (not the TCP part only).

• get_udp_elementreturns an UDP element from a IP datagram. It returns a data
block or an integer, according to the type of the element. Its arguments are:

– elementis the name of the UDP field (seeforge_udp_packet).

– udp is the IP datagram (not the UDP part only).

• insert_ip_options adds an IP option to the datagram and returns the modified
datagram. Its arguments are:

– codeis the number of the option.

– length is the length of the option data.

– ip is the old datagram.

– value is the option data.

• pcap_nextlistens to one packet and returns it. Its arguments are:

– interface is the network interface name. By default, NASL will try to find
the best one.

– pcap_filter is the BPF filter. By default, it listens to everything.

– timeout is 5 seconds by default.

• set_ip_elementsmodifies the fields of a datagram. The named argumentip is
the datagram; the other arguments are the same asforge_ip_packet. Once again,
ip_dst is ignored. It returns the new datagram.

33

• set_tcp_elementsmodifies the TCP fields of a datagram. The named argument
tcp is the IP datagram; the other arguments are the same asforge_tcp_packet.
It returns the new IP datagram.

• set_udp_elementsmodifies the UDP fields of a datagram. The named argument
udp is the IP datagram; the other arguments are the same asforge_udp_packet.
It returns the new IP datagram.

• send_packetsends a list of packets (passed as unnamed arguments) and listens
to the answers. It returns a block made of all the sniffed “answers”.

– length is the length of each packet by default.

– pcap_activeis TRUE by default. Otherwise, NASL does not listen for the
answers.

– pcap_filter is the BPF filter. By default it is"ip and (src host targetand
dst hostnessus_host)" .

– pcap_timeoutis 5 by default.

3.2.9 Cryptographic functions

They are only implemented if Nessus is linked with OpenSSL.

• HMAC_DSS takes two named string arguments (data andkey) and returns the
HMAC as a string.

• HMAC_MD2 takes two named string arguments (data andkey) and returns the
HMAC as a string.

• HMAC_MD4 takes two named string arguments (data andkey) and returns the
HMAC as a string.

• HMAC_MD5 takes two named string arguments (data andkey) and returns the
HMAC as a string.

• HMAC_RIPEMD160 takes two named string arguments (data and key) and
returns the HMAC as a string.

• HMAC_SHA takes two named string arguments (data andkey) and returns the
HMAC as a string.

• HMAC_SHA1 takes two named string arguments (data andkey) and returns
the HMAC as a string.

• MD2 takes an unnamed string argument and returns the hash as a string.

• MD4 takes an unnamed string argument and returns the hash as a string.

• MD5 takes an unnamed string argument and returns the hash as a string.

• RIPEMD160 takes an unnamed string argument and returns the hash as a string.

• SHA takes an unnamed string argument and returns the hash as a string.

• SHA1 takes an unnamed string argument and returns the hash as a string.

34

3.2.10 Miscellaneous functions

• cvsdate2unixtimetakes one named string argument (date) and returns the num-
ber of seconds since 1970. The argument is supposed to be a date field auto-
matically generated by CVS; the purpose of this function is to detect out of date
plugins.

• defined_functakes one unnamed string argument and returns TRUE if a function
with this named is defined. Whether it is a user or a built-in function does not
matter.

• dump_ctxt is a debugging function which is not very useful for end users. It
does not take any argument.

• func_has_argtakes a first string arguments (the function name) and a second
string or integer argument (the argument name or number). It returns TRUE if
the function accepts this argument, FALSE otherwise.

• func_named_argstakes one unnamed string argument (the function name) and
returns an array of all named arguments.

• func_unnamed_argstakes one unnamed string argument (the function name)
and returns the number of unnamed arguments.

• gettimeofday takes no argument and returns the number of seconds and mi-
croseconds since January 1st 1970. The return value is a character string for-
mated like a floating point number: the seconds are on the left of the decimal
point and the microseconds on the right, on six digits. For example:“1067352015.030757”
means1067352015seconds and30757microseconds.
The string manipulation functions can be used to extract the two numbers. e.g.
v = split(value, sep:’.’); would convert it into an array of two elements.

• isnull takes one unnamed argument and returns TRUE if it is not initialized, and
FALSE otherwise.
Remember that most of the time, (x == NULL) will not give the same result as
isnull(x)

• localtime takes one integer unnamed argument (a “Unix time” = number of sec-
onds since 1970-01-01) and one boolean named argumentutc. Both can be om-
mited: by default, the time is the current time andutc is FALSE. The function
returns an array that contains those keys35:

sec The number of seconds after the minute, normally in the range 0 to 59, but
can be up to 61 to allow for leap seconds.

min The number of minutes after the hour, in the range 0 to 59.

hour The number of hours past midnight, in the range 0 to 23.

mday The day of the month, in the range 1 to 31.

mon The number of the month, in the range 1 to 12.

35The values are slightly different from the structure returned by “localtime” or “gmtime”. Some counts
start at 1 instead of 0. I find this more intuitive.

35

year The year (4 digits).

wday The number of days since Sunday, in the range 0 to 6.

yday The current day in the year, in the range 1 to 366.

isdst A flag that indicates whether daylight saving time is in effect at the time
described. The value is positive if daylight saving time is in effect, zero if
it is not, and negative if the information is not available.

• make_array takes anyevennumber of unnamed arguments and returns an array
made from them. Contrary tomake_list, only “atomic” values are accepted.
The first argument in each pair is the key (either an integer or a character string),
the second is the value. For example,v=make_array(1,’one’, ’Two’, 2); is
equivalent tov[1]=’one’; v[’Two’]=2;
make_array can return arrays with duplicated keys, that have to be converted
with make_listor walked through withforeach

• make_list takes any number of unnamed arguments of any types and returns an
array made from them. If an argument is an array, it is split into its elements
(i.e. make_list does not create a multi-dimensional array); the “integer indexed”
elements will be re-indexed but the order will be kept.
e.g., this:
v = make_list(0,-1,’two’); w = make_list(’A’, v);
is equivalent to:
v[0] = 0; v[1] = -1; v[2] = ’two’;
w[0] = ’A’; w[1] = 0; w[2] = -1; w[3] = ’two’;

• max_index takes one unnamed array argument and returns the bigger integer
index used plus 1.
e.g., to add an element at the end of any array, you may writew[max_index(w)]
= value;

• mktime(sec, min, hour, mday, mon, year, isdst) takes seven integer named argu-
ments and returns the “Unix time” (= number of seconds since 1970-01-01) as
an integer, orNULL if some values are invalid. The arguments have the same
meaning as the keys used inlocaltime (see above), but there are nowday or
yday arguments.
Default values are zero for all arguments, which is invalid foryear, but not for
mon or mday: C mktime normalizes the date36.
year can be on 4 digits or 2 digits; in this case,1900is added to the value before
processing.104means2004.

• replace_or_set_kb_itemcallsreplace_kb_itemif this function exists,set_kb_item
otherwise. It takes too named arguments (name & value).

• safe_checkstakes no argument and returns the boolean value of the “safe checks”
option.
Dangerous plugins which may crash the remote service are expected to change
their behavior when “safe checks” is on. Usually, they just identify the service
version (e.g. from the banner) and check if it is known as vulnerable.

36See “man 3 mktime”. 40 October => 9 November.

36

In “safe checks” mode, plugins from the most dangerous “categories” (ACT_DESTRUCTIVE_ATTACK,
ACK_DENIAL and ACT_KILL_HOST) are not launched. So you do not need
to test the value ofsafe_checksin those scripts.
You shouldn’t either write code likeif (safe_checks()) exit(0); . If
you do not want to run your test in this mode (e.g. because you do not know how
to parse the banner), you should move your plugin to one of those “dangerous”
categories, probablyACT_DESTRUCTIVE_ATTACK .

• sleeptakes one unnamed integer argument and waits for this number of seconds.

• type_of returns the type of the argument. The return value is a string:

– "undef" if the variable / argument is not initialized.

– "int" if it is an integer.

– "string" it if is an “impure string”.

– "data" if it is a “pure string”.

– "unknown" if the type is unknown, which means that you have found a
bug in the interpretor!

• usleeptakes one unnamed integer argument and waits for this number of mi-
croseconds.

• unixtime returns the current Unix time, i.e. the number of seconds since January
1st 1970.

3.2.11 “unsafe” functions

The following functions are only allowed in “trusted” signed scripts37. If they could
run anywhere, a user could upload a script and run arbitrary root code or perform a
denial of service aginst the Nessus server.

• find_in_path searches a command in$PATH and returnsTRUE if found, or
FALSE if not. It takes one string argument (the command name).

• pread launches a process, reads its whole output and returns it as a string. The
arguments are:

– cmd is the name of the program that will be run. If it is not an absolute
path, the program will be searched in$PATH.

– argv is an array of strings. Each string is an argument. Note thatargv[0]
is the name of the program (which may be different fromcmd, but will be
equal in most cases).

– cd is a boolean,FALSE by default. IfTRUE, Nessus changes its current
directory to the directory where the command was found.

– nice38 is an integer which changes the son process priority. You want to set
it to a positive value if you launch CPU hog commands.

37The command line interpretor trusts the script if the option -X is given. And the Nessus server trusts any
script if nasl_no_signature_checkis set toyesin nessusd.conf

38This argument appeared in version 2.1.2.

37

• file_closetakes a file descriptor (unnamed integer argument), closes it and re-
turns0 or NULL if there was a problem.

• file_open takes two named string arguments and returns a file descriptor (inte-
ger):

– modeis a string: “r” or “w”.

– nameis the file name.

• file_read takes two named integer arguments and returns the data:

– fp is the file descriptor.

– length is the desired data length.

• file_seektakes two named integer arguments and seeks into the file. It returns
NULL if there was an error or 0 if it worked.

– fp is the file descriptor.

– offset is the desired absolute offset (= position from the begining of the
file).

• file_stat takes a file name (unnamed string argument) and returns the file size or
NULL if there was a problem (unexisting file, for example).

• file_write takes two arguments and returns the number of bytes that were written.

– fp is the file descriptor (integer).

– data is the buffer (string).

• fread39 reads a file on the Nessus server. It takes one unnamed string argument
(the file name) and returns the whole file content in a string variable orNULL if
an error occured.

• fwrite writes a file on the Nessus server. It takes two named string argument (the
file name) and returns the number of written byte orNULL if an error occured.

– data is the data that will be written to the file.

– file is the file name.

• get_tmp_dir returns a temporary directory name including the trailing slash.

• unlink 40 removes a file on the Nessus server. It takes one unnamed string argu-
ment (the file name) and does not return any value.

3.3 NASL library

It is implemented through “include files”. Some of the functions are not very interesting
because they were not designed to be called directly: they are used by other functions
in the “.inc” file.

39This function appeared in Nessus 2.1.2. Previous versions can emulte it with something like:
x = pread(cmd: "/bin/cat", argv: make_list("cat", file_name));

40This function appeared in Nessus 2.1.2. Previous versions can emulte it with something like:
x = pread(cmd: "/bin/rm", argv: make_list("rm", file_name));

38

3.3.1 dump.inc

• dump(ddata, dtitle)
prints the optional title and dumps the data block to the standard output. This
function is useful for debugging only.

• hexdump(ddata)
dumps a data block into hexadecimal and returns the results (as a string).

3.3.2 ftp_func.inc

• ftpclose(socket)
cleanly closes a FTP connection: sends “QUIT”, waits for the answer and then
closes the socket. This functions does not return any value.

• get_ftp_banner(port)
returns the FTP banner that was stored in the KB under“ftp/banner/ port_number”.
If the KB item is not present, the function connects to the FTP server, reads the
banner, stores it into the KB and returns it.

• ftp_recv_line(socket)
reads a line on the socket until the 4thcharacter is different from “-”. Useful to
skip a long login banner.

3.3.3 http_func.inc

• check_win_dir_trav(port, url, quickcheck)
connects to port and sends a HTTP GET request to the givenurl . You are sup-
posed to try to access AUTOEXEC.BAT, BOOT.INI or WIN.INI
If quickcheck is TRUE, the function returns TRUE if it gets a 200 (OK) answer.
If quickcheck is FALSE, it looks for pattern in the answer; it will returns TRUE
if it can find “ECHO”, “SET”, “export”, “mode”, “MODE”, “doskey”, “DOSKEY”,
“[boot loader]”, “[fonts]”, “[extensions]”, “[mci extensions]”, “[files]”, “[Mail]”,
or “[operating systems]”.
You are supposed to setquickcheck if the server answers with clean 404 codes
to requests to unknown pages, i.e. if “www/no404/port” is not set in the KB.

• get_cgi_path(port)
returns the list of directories where the CGI might be installed. The list is a string
where the items are separated with “:”.
WARNING: this function is not a good idea and may disappear in the future.

• get_http_banner(port)
returns the HTTP banner that was stored in the KB under“www/banner/port_number”.
If the KB item is void, the function connects to the HTTP server, sends a GET
request, and stores the result into the KB.

• get_http_port(default)
reads the KB item“Services/www”, verifies that the port is open, that there is
an HTTP server behind it, and returns it. Note that the function will fork if there
are several web servers on the target machine.
If the KB item is void, thedefault port is tested.
If no HTTP port is found,the script exits.

39

• http_40x(port,code)
returnsTRUE if the HTTP answer “code” is between 400 and 409 or something
identified by no404.nasl;FALSE otherwise.

• http_is_dead(port, retry)
tries very hard to test if the web server is still alive even if there is a transpar-
ent or reverse proxy on the way. It sends a HTTP GET request for a random
page (/NessusTest<rand>.html) and waits for the answer. The optional argu-
mentretry is the number of times it should wait (one second) and retry to open
the socket to the remote service if this failed in the first time (by default, there is
no retry).
It returns TRUE if

– the connection was refused, or

– no valid HTTP answer was received, or

– a 502 (bad gateway) or 503 (service unavailable) was received.

• http_recv_body(socket, headers, length)
reads N bytes from thesocket. N is defined like this:

– If theheaderfield is not defined, the function first callshttp_recv_headers;
the “Content-Length” field is extracted from the headers.
Note that the headers will not be returned, only the HTTP “body”.

– Then, if length is set

∗ if content_length could be extracted from the headers, N = max(length, con-
tent_length)

∗ otherwise, N = length

– else if content_length could be extracted from the headers, N = content_length,

– else N defaults to 8192 bytes.

• http_recv(socket, code)
reads the HTTP headers and data from the socket and returns all this.
This function is efficient because it just reads the right number of bytes without
waiting for a network timeout. The code argument is optional. If you read the
HTTP code (withrecv_line), you have to put it into this argument41.

• http_recv_length(socket, bodylength)
reads the HTTP headers, then callshttp_recv_body with length=bodylength,
and returns the concatenated headers and body.

• locate_cgi(port, item)
looks for a given CGI on a web server. It returns its path if it could be found, or
NULL otherwise.
WARNING: the implementation is wrong, so this function may disappear in the
future.

41In fact,http_recv only needs to know that the code was read, becausehttp_recv_headermay not work
in this case.http_recv uses its own loop to read the remaining headers before the body.

40

• php_ver_match(banner, pattern)
the function returns TRUE if the regex pattern matches a “Server:” ou “X-
Powered-by:” line in the banner. A way to use this function is, for example:

if (php_ver_match(banner:banner,
pattern:".*PHP/((3.*)|(4\.0.*)|(4\.1\.[01].*))"))

security_hole(port);

• cgi_dirs()
returns an array containing all the directories that may have CGIs in it (by de-
fault /cgi-bin and /scripts). Several scripts try to augment this list (in particular
webmirror.nasl).

3.3.4 http_keepalive.inc

Nessus 2.0.1 and newer support HTTP keep-alive connections, which avoid to re-open
a socket for each request. This saves bandwidth and CPU cycles, especially through
SSL/TLS. At this time, only the requests made from within the same plugin can be kept
alive, however sharing one socket among multiple plugins could be done in the future.
To work properly, this file must be included afterhttp_func.inc.

• http_keepalive_send_recv(port, req)
sends the requestreq to the remote web server listening on portport and returns
the result of the request, or NULL if the connection could not be established.
Internally, this function will automatically determine if the remote host supports
Keep-Alive connections and will restore the connection if it was cut.req is a full
HTTP request, as returned byhttp_get().
It is not recommanded to send potentially destructive attacks on top of a kept-
alive connection.

• is_cgi_installed_ka(port, item)
acts the same way asis_cgi_installed()but on top of a kept-alive connection.

• check_win_dir_traversal_ka(port, url, quickcheck)
acts the same way ascheck_win_dir_traversal() but on top ofa kept-alive con-
nection.

3.3.5 misc_func.inc

• register_service(port, proto,ipproto)
“registers” a service. Used values for the proto arguments are:aos, bugbear,
DCE/guid, dns, lpd, uucp, irc , daytime, ftp , smtp, nntp, ssh, auth, finger,
www, mldonkey-telnet, nessus, QMTP , radmin , RPC/name,portmapper,
rsh, x11, xtel, xtelw.
By default, ipproto is tcp; udp was introduced in Nessus 2.1.2 and is used by
experimental scripts only, at this tome.
In practice, this function defines two items in the KB:

– Known/tcp/port = proto
or Known/udp/port = proto

41

– Services/proto = port
or Services/udp/proto = port
This may create a list if several servers are known on differents ports.

• known_service(port,iproto)
returns the service name42 if the service is known on the port,NULL otherwise.
Note that if the service was “registered” several times,known_servicemay fork.
So the best way to use this function is to exit if it returns a defined value. For
example:

port = get_kb_item("Services/unknown");
This was set by find_service.nes but another plugin
may have identified the service. So:
if (known_service(port: port)) exit(0);

• get_unknown_banner(port, dontfetch, ipproto)
readsunknown/banner/port from the KB. If a value is found, it is returned. If
no value is found anddontfetch is set, the function returns NULL. Otherwise
the function connects to the port, tries to read a banner, stores it in the KB and
returns it.
By default,ipproto = tcp

• set_unknown_banner(port, banner, ipproto)
setsunknown/banner/port tobanner in the KB.
By default,ipproto = tcp

• get_service_banner_line(service, port,ipproto)
readsServices/service from the KB. If no value is found, uses theport parame-
ter. It then reads service/banner/port from the KB; if it exists, it is returned. If
not, the function connects to the port, reads one line and returns it,but does not
store it in the KB.
Note that this function may fork.
By default,ipproto = tcp

• get_rpc_port(program, protocol)
calls the portmapper and gets the port where the service specified by the parame-
ters is located.program is a RPC number andprotocol may be IPPROTO_TCP
or IPPROTO_UDP. If the portmapper could not be reached or the service is
down, the function returns0.

• service_is_unknown(port,ipproto)
returnsTRUE if the service was “registered” (see above) orFALSE otherwise.
This function does not fork!
ipproto is tcp by default.

3.3.6 nfs_func.inc

NFS read and write functions are not defined yet. You can only mount a NFS share and
inspect its contents.

42proto parameter forregister_service

42

• mount(soc, share)
attempts to mountshare (defined inNFS/exportlist in the KB). soc is a UDP
socket opened to the remote mount daemon (mountd, rpc program#100005).
This function returns NULL in case of failure, or a file handle (fid) in case of
success.

• umount(soc, share)
unmountsshare- basically, this tells the remote mount daemon that we will stop
using its services.socis a UDP socket opened to the remote mount daemon.

• readdir (soc, fid)
returns the content of the directory pointed byfid. socis a UDP socket opened
to the remote NFS daemon (nfsd, rpc program #100003). This function returns
an array.

• cwd(soc, fid, dir)
changes directories.socis a UDP socket opened to the remote NFS daemon,fid
is the current working directory anddir is the name of the directory we would
like to change it. This function returns NULL on failure, or a handle (fid) to the
directory we changed to.

3.3.7 smb_nt.inc

The SMB library provides a way to interact with Windows hosts using SMB, either on
top of port 139 or on top of port 445. Since Microsoft protocol is barely documented,
most if not all of these functions have been coded by packet analysis. Therefore, the
name of the functions may vary compared to what you would find in Microsoft-Land.

The functions described here are both low-level and high-level. This a description
of the SMB protocol (and DCE/RPC over SMB) is beyond the scope of this manual,
we suggest you refer to the books listed in the bibliography if needed. The functions
are defined in this guide in the order they are usually used :

Setting up an SMB session

• smb_session_request(soc, remote)
pre-establishes a SMB session with the remote host.soc is a socket opened
to port 139 or 445 if the remote host supports it. You must open the connect
to the port pointed by the KB itemSMB/transport , which is defined in the
plugin cifs445.nasl.remote is the netbios name of the remote host (as stored in
the KB itemSMB/name, created in the pluginnetbios_name_get.nasl). If the
name is not defined you can try to use*SMBSERVER which is recognized by
most SMB hosts. If the connection takes place on top of port 445, this function
immediately returns as it is unnecessary in this case.

• smb_neg_prot(soc)
negociates the protocol we will use to log into the remote host. This function
asks for NTLMv1 authentication if possible, and returns a buffer suitable to be
used withsmb_session_setup(), which contains the authentication protocols the
remote host supports.socmust be the socket opened to the remote SMB server,
and a call tosmb_session_request()has to be made before this function is called.

43

• smb_session_setup(soc, login, password, domain, prot)
setups the SMB session to the remote host. It logs aslogin with the password
password, in the domaindomain (which can be NULL, in which case the func-
tion will log locally). This function returns a buffer suitable to use with the
functionsession_extract_uid(), or NULL if the authentication failed. Internally,
the function will use either clear-text or NTLMv1 authentication, depending on
what the remote host supports and the options set by the user.prot is the buffer
returned by the functionsmb_neg_prot(). socmust be the socket opened to the
remote SMB server, and a call tosmb_neg_prot()must have been made prior to
calling this function.smb_session_setup()returns a buffer suitable to be used
with session_extract_uid().

• session_extract_uid(reply)
extracts the user id fromreply. It is used each time a new SMB call is made. It
returns 0 ifsmb_session_setup()failed.

Connecting and reading from the remote shares Each SMB host exports shares -
virtual directories accessible from accross the network, usually containing files. The
list of shares exported by a given host is written inSMB/shares, which is written to by
smb_enum_shares.nasl.

• smb_tconx(soc, name, uid, share)
connects toshare(ie: “IPC$”) on top of the socketsocconnected to the smb host
whose name isname.The optionuid comes from the call tosession_extract_uid().
This function returns a buffer suitable to be used withtconx_extract_tid().

• tconx_extract_tid(reply)
extracts the tree id fromreply, which is a buffer returned by a call tosmb_tconx().
It returns 0 if the call tosmb_tconx()failed.

• OpenAndX(socket, uid, tid, file)
opensfile on the share pointed bytid , and returns a file id (fid) or NULL if the
call failed (ie: file does not exist or can not be read).

• ReadAndX(socket, uid, tid, count, off)
readscount bytes starting at offsetoff in the filefid and returns the content (or
NULL if the call failed)

• smb_get_file_size(socket, uid, tid, fid)
returns the size of the file pointed byfid.

Accessing the remote registry

• smbntcreatex(soc, uid, tid)
this function creates a connection to the remote \winreg named pipe. It should
be rewritten to support a fourth argument (pipename) but it is not the case at
this time. soc is a socket connected to the remote SMB host,uid is our user id
(obtained viasmb_session_setup()andsession_extract_uid()) andtid is point-
ing to the special share IPC$. This function returns a buffer suitable to be used
with smbntcreatex_extract_pipe()or NULL if the called failed (ie: there is no
\winreg named pipe).

44

• smbntcreatex_extract_pipe(reply)
extracts the pipe id from the buffer returned bysmbntcreatex(). It returns 0 if
the call failed.

• pipe_accessible_registry(soc, uid, tid, pipe)
what this function does is quite unclear. It should be called before continuing to
explore the registry, just aftersmbntcreatex(). pipe is the integer returned by
smbntcreatex_extract_pipe().

• registry_access_step_1(soc, uid, tid, pipe)
this function should be renamed registry_open_hklm (and will probably be).
It opens HIVE_KEY_LOCAL_MACHINE and returns a buffer suitable to use
with registry_get_key()andregistry_get_key_security().

• registry_get_key(soc, uid, tid, pipe, key, reply)
opens the registry key “key” (as in “SOFTWARE\Microsoft\Windows NT”) and
returns a buffer suitable to use withregistry_get_item_dword(), registry_get_item_sz(),
or registry_get_key_security(). reply is the buffer returned byregistry_access_step_1().
This function returns NULL if the key does not exist or is not accessible.

• registry_get_item_sz(soc, uid, tid, pipe, item, reply)
returns the content ofitem in the currently opened key (designated byreply,
which is a buffer returned byregistry_get_key()). It returns a buffer which needs
to be decoded withregistry_decode_sz(). item must be a string key value. Ifre-
ply is the reply to a call toregistry_get_key(key:”SOFTWARE\Microsoft\Windows
NT”), item could be equal to “CurrentVersion”.

• registry_decode_sz(data)
decodes the value returned byregistry_get_item_sz()and returns a string con-
taining the value, or NULL if the call toregistry_get_item_sz()failed.

• registry_get_item_dword(soc, uid, tid, pipe, item, reply)
returns the content ofitem in the currently opened key (designated byreply,
which is a buffer returned byregistry_get_key()). It returns a buffer which
needs to be decoded withregistry_decode_dword(). item must be an integer
key value.

• registry_decode_dword(data)
decodes the value returned byregistry_get_item_dword()and returns an integer
containing the value, or NULL if the call toregistry_get_item_dword()failed.

• registry_get_key_security(soc, uid, tid, pipe, reply)
obtains the ACLs associated to the key opened withregistry_get_key(). re-
ply is the buffer returned byregistry_get_key(). It returns a security descriptor
which contains the ACLs and which has to be parsed manually. The function
registry_key_writeable_by_non_admin() is a great example of usage for this.

• registry_key_writeable_by_non_admin(security_descriptor)
decodes the buffer returned byregistry_get_key_security()and returns TRUE
if a user other than the owner of the key or a member of the administrator group
can write to the key.

45

SAM access

• OpenPipeToSamr(soc, uid, tid)

• SamrConnect2(soc, tid, uid, pipe, name)

• _SamrEnumDomains(soc, uid, tid, pipe, samrhdl)

• SamrDom2Sid(soc, tid, uid, pipe, samrhdl, dom)

• SamrOpenDomain(soc, tid, uid, pipe, samrhdl, sid)

• SamrOpenBuiltin(soc, tid, uid, pipe, samrhdl)

• SamrLookupNames(soc, uid, tid, pipe, name, domhdl)

• SamrOpenUser(soc, uid, tid, pipe, samrhdl, rid)

• SamrQueryUserGroups(soc, uid, tid, pipe, usrhdl)

• SamrQueryUserInfo(soc, uid, tid, pipe, usrhdl)

• SamrQueryUserAliases(soc, uid, tid, pipe, usrhdl, sid, rid)

3.3.8 smtp_func.inc

• smtp_send_socket(socket, from, to, body)
sends a SMTP message on an open socket and returns TRUE if the message for
accepted for delivery, or FALSE if some problem occured.

• smtp_send_port(port, from, to, body)
opens a socket toport , sends a SMTP message, and closes the socket. It re-
turns TRUE if the message for accepted for delivery, or FALSE if some problem
occured.

• smtp_from_header()
returns the default “From” address. If the KB itemSMTP/headers/from is not
set, the default address is “nessus@example.com”.

• smtp_to_header()
returns the default “To” adress. If the KB itemSMTP/headers/tois not set, the
default address is “postmaster@[1.2.3.4]” (where 1.2.3.4 is the target host IP).

• get_smtp_banner(port)
reads the KB itemsmtp/banner/port and returns it, or if it is not set, connects to
the port, reads the SMTP banner, stores it into the KB and returns it.

• smtp_recv_banner(socket)
reads lines from the socket and returns the first line that does not started with
“220-”.

46

3.3.9 telnet.inc

• get_telnet_banner(port)
readstelnet/banner/port from the KB and returns it. If no value is found, con-
nects to the port, grabs the telnet banner, stores it into the KB and returns it.

• set_telnet_banner(port, banner)
writesbanner into the KB itemtelnet/banner/port

3.3.10 uddi.inc

• create_uddi_xml(ktype,path,key,name)
formats a UDDI XML query, whatever this means.
Can anybody write something about this?

47

4 Hacking your way inside the interpretor

4.1 How it works

4.1.1 The parser

The lexical analyzer It is written directly in C because flex cannot generate C reen-
trant code43. That’s why it is rather crude. Anyway, I was surprised to see that accord-
ing to cachegrind, we do not lose much time in it.
The lexer entry point is the “mylex” function innasl_grammar.y. The parser calls it;
you are not supposed to do it. I mention it because that’s where you can add “tokens”.

The syntactic analyzer It is written in Bison and youcannotcompile it with Yacc,
because we use the%pure_parser instruction. This generates a reentrant parser, al-
lowing us to handle “includes” very simply44. While reading the source, the parser
builds a “syntax tree”.

The syntax tree You can find a description of the “cell type” innasl_tree.h. The
only used data type is thetree_cellstructure. Each cell maybe linked to children cells:
from 0 (if it is a leaf) to 4 (if I remember correctly, only the “for” instruction uses this).
For example, this code:

x = y * 2;
f(arg1: x);

will become this tree:

NODE_INSTR_L
1: NODE_AFF

1: NODE_VAR Val="x"
2: EXPR_MULT

1: NODE_VAR Val="y"
2: CONST_INT Val=2

2: NODE_INSTR_L
1: NODE_FUN_CALL Val="f"

1: NODE_ARG Val="arg1"
1: NODE_VAR Val="x"

4.1.2 The interpretor

To iterate is human, to recurse is divine.

The entry point isnasl_exec. This function takes two arguments (a “lexical context”
and a “tree cell”) and returns the result another “tree cell”, the result of the evaluation
of the a “tree cell” in the “context”. To perform its job,nasl_execcalls itself again and
again45.

43It is able to generate reeentrant C++ code but we do not want to link Nessus with C++.
44OK, a good preprocessor could do it. But the fact thatinclude("file.inc"); is a simple instruc-

tion allows some interesting things, e.g.
if (!defined_func("gizmo") include("gizmo_compat.inc"); .

45Although there are much quicker ways to interprete a language, walking along the syntax tree is simple.
We know that we could run 10 times faster or even more by implementing a code generator and a Virtual
Machine, but we do not need it yet. Maybe there will be a NASL3.

48

4.1.3 Memory management

Memory copy is expensive46, memory allocation too. So I tried to avoid unnecessary
duplications of “cells”. That’s why I implemented a poor man’s garbage collector: each
“cell” has a reference count.ref_cell increments it, andderef_celldecrements it. Once
it reaches 0, the cell is freed47.
To use, do not try to be smart, just follow a couple of simple rules:

• nasl_execnever tries to free its input argument.

• nasl_execreturns a value that is “referenced” (i.e. ref_count > 0). Once you
have finished playing with it, you have to “dereference” it.

• Internal functions should return “referenced” cells.

4.1.4 Internal functions interfaces

Every internal function uses the same interface: it reads a “lexical context” on input
and returns a “cell”. The interface is described in details in the next paragraph.
The function name and NASL arguments are declared innasl_init.c

4.2 Adding new internal functions

4.2.1 Interface

Every internal function has the same interface:

• it takes one input argument, a “lexical context”. The NASL arguments are vari-
ables in the context, either “named” or “numbered”. The context is chained to
the calling context.

• and it returns a “tree cell”. The returned cell should be “referenced” once; you
shouldn’t have to do anything as all the cell allocation functions set “ref_count”
to 1.

– If you do not want to return a value, returnsFAKE_CELL .

– If you want to return a serious error, returnsNULL .

A simple example:

tree_cell*
my_test_function(lex_ctxt* lexic)
{

fprintf(stderr, "My test function was called\n");
/* let’s look at the context */
dump_ctxt(lexic);
/* And return nothing (in NASL) */
return FAKE_CELL;

}

46If you do not believe me, run a slow plugin like webmirror.nasl with cachegrind and look at the result.
47And if it becomes negative, the interpretor aborts because this is a serious bug! In fact, the reference

count becomes negative when the cell is “referenced” too many times (integer roll over).

49

4.2.2 Reading arguments

The arguments are stored as “named” or “numbered” variables in the context. This
NASL code:

f(1, "TWO", a: 33, z: "three");

will create four variables in the context, two “numbered” and two “named”:

• 0 -> 1

• 1 -> "TWO"

• a -> 33

• z -> "three"

To read those arguments, you can use one of those functions:

• char*get_str_var_by_num(lex_ctxt* lexic, int num)
reads the variable and converts it to a string if necessary. Do not free the result
and do not call the function twice in a row on a non-string variable48 without
copying the result somewhere, as the function returns a pointer to a static buffer
in this case.
If the variable is not initialized or cannot be converted to character, NULL is
returned.

• int get_int_var_by_num(lex_ctxt* lexic, int num, int default_value)
reads the variable and converts it to an integer if necessary.
If the variable is not initialized or cannot be converted, the default value is re-
turned.

• char*get_str_local_var_by_num(lex_ctxt* lexic, const char* name)

• int get_int_local_var_by_num(lex_ctxt* lexic, int num, int default_value)

• int get_local_var_size_by_name

• int get_var_size_by_num

4.2.3 Returning a value

Returning void is easy: just returnsFAKE_CELL (which is currently defined as
“ (void*)1”, but this might change). To return a value, you have to allocate a cell,
reference it once (this is automatically done by all the alloc_*cell functions) and put
data into it. Examples:

tree_cell *retc;
char *p;
/* return 42 */
retc = alloc_typed_cell(CONST_INT);
retc->x.i_val = 42;
return retc;

48i.e. integer or array

50

/* return "abcd" */
retc = alloc_typed_cell(CONST_DATA);
retc->x.size = 4;
retc->x.str_val = p = emalloc(5);
strcpy(p, "abcd");
return retc;

4.2.4 Adding your function in nasl_init.c

Your function is not yet known to the NASL interpretor. You have to add it into
nasl_init.c

4.2.5 Cave at

You should be careful not to open security holes with your new C functions. Here are
examples of potentially dangerous system calls:

open as it allows to read protected files if the argument is not properly checked
(the Nessus daemon runs as root).

unlink as it allows to delete protected files.

fork as a malicious user may implement a fork bomb. More, it breaks the cur-
rent model, where Nessus controls the son processes.

kill as you might kill system processes if the arguments is not properly checked.

4.3 Adding new features to the grammar

4.3.1 caveat

First, if you do not know what “yacc” or “bison” do, how they do it and why, if you
ignore what a lexical analyzer is, a regular expression or a LALR context-free grammar,
a finite state machine or a stack automata, justdon’t touch the grammar.

This is important: the current grammar is clean. The precedence of every operator
is clearly defined; the grammar has only one shift/reduce conflict, the classical “dan-
gling else” ambiguity49. That’s why there is an “%expect 1” directive. If you modify
the grammar and add ambiguities, you arenotsupposed to solve them by increasing the
expected number of conflicts. Do whatever is necessary (and clean) to remove them.

One last time: if you have never studied language theory and theoretical computer
science, stop reading here!

4.3.2 Adding a new operator in the grammar

You will have to modify the lexical analyzer to recognize the token.

4.3.3 Adding a new type to the grammar

4.4 Checking the result

49In the construction “if (T1) if (T2) I1; else I2; ” the “else ” can be attached to the first
or the second “if ”. All modern parsers attach it the second (= nearest) “if ”.

51

References

[RFC 821] SMTP protocol...

[RFC 854 / STD 8] Telnet protocol...

[RFC 1945] Hypertext Transfer Protocol – HTTP/1.0. T. Berners-Lee, R.
Fielding, H. Frystyk. May 1996.

[RFC2246] The TLS Protocol Version 1.0. T. Dierks, C. Allen. January 1999.

[RFC2616] Hypertext Transfer Protocol – HTTP/1.1. R. Fielding, J. Gettys,
J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June
1999.

[SSL v3] SSL 3.0 SPECIFICATIONhttp://wp.netscape.com/
eng/ssl3/

[SSL v3 (03/96)] http://wp.netscape.com/eng/ssl3/ The SSL Proto-
col Version 3.0 - Internet Draft - March 1996 (Expires 9/96) - Alan
O. Freier, Netscape Communications; Philip Karlton, Netscape
Communications, Paul C. Kocher, Independent Consultant.

[SSL v3 (11/96)] http://wp.netscape.com/eng/ssl3/draft302.
txt The SSL Protocol Version 3.0 - November 18, 1996 - Alan
O. Freier, Netscape Communications; Philip Karlton, Netscape
Communications, Paul C. Kocher, Independent Consultant.

[DCE/RPC] DCE/RPC over SMB - Luke Kenneth Casson Leighton - Macmil-
lan Technical Publishing - ISBN 1-57870-150-3

52

